University of Dundee University of Dundee
Text only
         
Search
 
 
 
 

2 December 2012

Tayside volunteers boost international search for genes linked to heart disease

Fifteen new genes linked to coronary artery disease have been discovered by an international study, which included thousands of participants from Tayside.

In the largest genetic study of Coronary Artery Disease (CAD) to date, researchers from the CARDIoGRAMplusC4D Consortium report the identification of 15 genetic regions newly associated with the disease, bringing to 46 the number of regions associated with CAD risk.

The team identified a further 104 independent genetic variants that are very likely to be associated with the disease, enhancing our knowledge of the genetic component that causes CAD.

They used their discoveries to identify biological pathways that underlie the disease and showed that lipid metabolism and inflammation play a significant role in CAD.

CAD and its main complication myocardial infarction (heart attack) are one of the most common causes of death in the world and approximately one in five men and one in seven women die from the disease in the UK. CAD has a strong inherited basis.

Those taking part in the worldwide study included 6000 participants of the GoDARTs genetic study in Tayside. Professor Colin Palmer, Chair of Pharmacogenomics at the University of Dundee, led the Tayside component of the study in collaboration with over 180 other investigators from around the world.

"This work is a huge achievement," said Professor Palmer. "Getting such powerful genetic analysis in over 200,000 genetic variants in 200,000 people (40 billion tests) is tricky but necessary and this is now starting to yield powerful tools to personalise treatment and aid prevention of coronary artery disease. A lot of this work reinforces the importance of lowering cholesterol as a powerful preventive measure, and information from individual novel genes may lead to improved medicines in the future.

"Without the public volunteering for these genetic studies progress would not be possible. The Tayside population has proven very enthusiastic to take part in these studies, and currently around 1in10 members of the public in Tayside are enrolled in genetic studies."

The results of this study are published this week in Nature Genetics.

"Our research strengthens the argument that, for most of us, genetic risk to CAD is defined by many genetic variants, each of which has a modest affect," says Dr Panos Deloukas, co-lead author from the Wellcome Trust Sanger Institute. "We went beyond traditional genetic association studies to explore likely genetic signals associated with the disease and to use the information to identify biological pathways underlying CAD.

"Our next step is to design new analyses to also test rarer variants to provide a full catalogue of disease associations that in the future, could identify individuals most at risk of a heart attack."

The Consortium spanning over 180 researchers from countries across Europe (UK, Germany, Iceland, Sweden, Finland, the Netherlands, France, Italy, Greece), Lebanon, Pakistan, Korea, USA and Canada analysed DNA from over 60,000 CAD cases and 130,000 apparently unaffected people. The researchers integrated the genetic findings into a network analysis and found the metabolism of fats being the most prominent pathway linked to CAD. The second most prominent pathway, however, was inflammation which provides evidence at the molecular level for the link between inflammation and heart disease.

"The importance of the work is that while some of the genetic variants that we have identified work through known risk factors for CAD such as high blood pressure and cholesterol, many of the variants appear to work through unknown mechanisms," says Professor Nilesh Samani, co-lead author from the University of Leicester. "Understanding how these genetic variants affect CAD risk is the next goal and this could pave a way to developing new treatments for this important disease."

This study provides a useful framework for future projects to elucidate the biological processes underlying CAD and to investigate how genes work together to cause this disease.

Professor Peter Weissberg, Medical Director at the British Heart Foundation, which co-funded the research, said: "The number of genetic variations that contribute to heart disease continues to grow with the publication of each new study. This latest research further confirms that blood lipids and inflammation are at the heart of the development of atherosclerosis, the process that leads to heart attacks and strokes.

"These studies don?t take us any closer to a genetic test to predict risk of heart disease, because this is determined by the subtle interplay between dozens, if not hundreds, of minor genetic variations. The real value of these results lies in the identification of biological pathways that lead to the development of heart disease. These pathways could be targets for the development of new drug treatments in the future."

Notes to Editors

The CARDIoGRAMplusC4D Consortium (2012) "Large-scale association analysis identifies new risk loci for coronary artery disease"
Published online in Nature Genetics on 02 December
Doi: 10.1038/ng.2480

Funding
A full list of funding can be found in the paper

Participating Centres
A full list of participating centres can be found in the paper


For media enquiries contact:
Roddy Isles
Head, Press Office
University of Dundee
Nethergate, Dundee, DD1 4HN
TEL: 01382 384910
E-MAIL: r.isles@dundee.ac.uk
MOBILE: 07800 581902